Polyamine-mediated reduction in human airway epithelial migration in response to wounding is PGE2 dependent through decreases in COX-2 and cPLA2 protein levels.

نویسندگان

  • Mark J Cowan
  • Timothy Coll
  • James H Shelhamer
چکیده

Both ornithine decarboxylase inhibition to deplete polyamines and cyclooxygenase inhibition diminish the migration response to injury of human airway epithelial cells in tissue culture monolayers by approximately 75%. Restoration of normal migration responses is achieved in the polyamine depleted system either by exogenous reconstitution of polyamines or the addition of prostaglandin E(2) (PGE(2)). However, only PGE(2) was able to restore migration in the cyclooxygenase-inhibited systems. Western blot for cyclooxygenase-2 and cytosolic phospholipase A(2) protein levels and ELISAs for PGE(2) secretion demonstrate dramatic increases over 24-48 h after monolayer wounding. These increases are completely abolished by polyamine depletion or cyclooxygenase inhibition. We conclude that polyamine inhibition decreases cellular migration in response to injury in airway epithelial cells at least in part through inhibiting normal PGE(2) production in response to injury. This may be brought about by decreases in cytosolic phospholipase A(2) and cyclooxygenase-2 protein levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulatory features of interleukin-1beta-mediated prostaglandin E2 synthesis in airway smooth muscle.

Exposure of airway smooth muscle (ASM) cells to the cytokine IL-1beta results in an induction of PGE2 synthesis that affects numerous cell functions. Current dogma posits induction of COX-2 protein as the critical, obligatory event in cytokine-induced PGE2 production, although PGE2 induction can be inhibited without a concomitant inhibition of COX-2. To explore other putative regulatory feature...

متن کامل

Polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca²+ signaling by differentially modulating STIM1 and STIM2.

Early epithelial restitution occurs as a consequence of intestinal epithelial cell (IEC) migration after wounding, and its defective regulation is implicated in various critical pathological conditions. Polyamines stimulate intestinal epithelial restitution, but their exact mechanism remains unclear. Canonical transient receptor potential-1 (TRPC1)-mediated Ca(2+) signaling is crucial for stimu...

متن کامل

Studies on Shokyo, Kanzo, and Keihi in Kakkonto Medicine on Prostaglandin E2 Production in Lipopolysaccharide-Treated Human Gingival Fibroblasts

We previously demonstrated that a kampo medicine, kakkonto, decreases lipopolysaccharide- (LPS-) induced prostaglandin E2 (PGE2) production by human gingival fibroblasts. In this study, we examined the herbs constituting kakkonto that exhibit this effect. Shokyo strongly and concentration dependently and kanzo and keihi moderately decreased LPS-induced PGE2 production. Shokyo did not alter cycl...

متن کامل

MIG-7 controls COX-2/PGE2-mediated lung cancer metastasis.

More effective treatments for metastatic lung cancer remain a pressing clinical need. In this study, we identified migration inducting gene-7 (MIG-7) protein as critical for COX-2/prostaglandin E2 (PGE2)- and Akt/GSK-3β-dependent tumor invasion/metastasis. COX-2/PGE2 activated EP4 to enhance Akt and GSK-3β phosphorylation and β-catenin/T-cell factor/lymphoid enhancer factor signaling leading to...

متن کامل

Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells.

Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 101 4  شماره 

صفحات  -

تاریخ انتشار 2006